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1. Introduction

In the ten years since its discovery, the AdS/CFT correspondence has established itself

as one of the cornerstones of contemporary high energy physics [1]. On one hand, this

correspondence is arguably the first - albeit only conjectural - non-perturbative realization

of string theory. Consequently, it is anticipated that a complete understanding of the nature

of the correspondence will yield many of the mysteries that shroud the regime of quantum

gravity. On the other hand, as a strong/weak coupling duality, the gauge theory/gravity

correspondence as embodied in Maldacena’s conjecture has proven an invaluable tool in the

understanding of the non-perturbative sector of gauge theory with applications everywhere

from the computations of gluon scattering amplitudes in N = 4 at strong coupling [2] to

a conjectured universal lower bound on the shear-viscosity to entropy density ratio of the

strongly coupled quark-gluon plasma produced at RHIC [3].

However, even after many such remarkable discoveries and ten years of development,

the AdS/CFT conjecture remains just that; a conjecture. This, as with many of the foun-

dational problems of string theory, is attributable in no small part to a fundamental lack

of understanding of the complete set of degrees of freedom of the theory. While strings
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provide a useful accounting of the perturbative states of the theory, the discovery of D-

branes [4] revealed - very pointedly so - that they were by no means the only states. An

excellent exemplification is found in the high energy growth of point gravitons - closed

string KK-modes - into giant gravitons described in the type IIB supergravity by spherical

D3-branes [5]. Actually, the study of finite temperature effects in string theory, most no-

tably the exponential growth of states near the Hagedorn temperature and the consequent

divergence of the canonical partition function, reveals that strings may not even be the

fundamental constituents of the theory [6]. Supposedly, just as the partonic structure of

QCD emerges at high temperatures and energies, so too will the true fundamental degrees

of freedom of string theory. To claim a complete understanding of the behavior of string

theory above the Hagedorn temperature is thus a gross understatement.

On the gauge theory side of things, while it has long been suspected that the

Hagedorn behavior of string theory on AdS5 × S5 is intimately related to the confine-

ment/deconfinement transition in planar N = 4 SYM on R × S3 (see for instance [7]),

matching the temperatures on both sides of the duality is no mean feat. In general, a

direct quantitative computation of the temperature (as well as the behavior of strings near

the Hagedorn point) is hampered by the need for an explicit, quantized string spectrum

- something decidedly lacking in the case of the AdS5 × S5 superstring. Consequently,

most of the literature on the field is restricted to flat backgrounds or toroidal compactifica-

tions thereof (as in, for example, the second of [6]). Fortunately, there is another entirely

non-trivial arena in which to test the correspondence: the maximally symmetric pp-wave

background obtained from AdS5 × S5 by a suitable Penrose scaling limit [8]. Not only is

string theory on this background exactly soluble (and hence yielding of an exact quantum

string spectrum) [9] but through a remarkable insight of Berenstein, Maldacena and Nas-

tase in [8], the dual gauge theory (or, more accurately, the specific sector of N = 4 SYM)

is also explicitly known. The study of thermal strings on this background that followed

shortly thereafter [10] proved to be extremely fruitful, demonstrating that not only does the

Hagedorn temperature (and the accompanying exponential growth of states) exist in this

background but that it is also an indication of a phase transition rather than a hard cutoff

to the temperature. This would seem to mesh neatly with the confinement/deconfinement

transition observed in the planar sector of the Yang-Mills theory except for the fact that in

the BMN double scaling limit, only a subsector of states survive - the “near BPS” states,

whose anomalous dimensions lie systematically close to chiral primaries.

The problem is again one of compatibility of regimes; where we are finally able to

compute an exact string spectrum (and consequently, the Hagedorn temperature) on the

gravity side of the duality, there are an insufficient number of states in the dual gauge

theory sector to account for the required exponential growth. Circumventing this difficulty

is quite nontrivial and was only recently accomplished by identifying an altogether different

decoupling limit of thermal SU(N), N = 4 SYM in which the physics of the gauge theory

is exactly captured by a ferromagnetic XXX 1

2

Heisenberg spin chain [11]. The Hagedorn

temperature is then computed from well-known thermodynamic properties of the spin chain

and matches excellently with the string theory result.

If, as it is hoped, the AdS/CFT program is to eventually lead to a complete under-

– 2 –



J
H
E
P
0
2
(
2
0
0
8
)
1
0
8

standing of QCD - a decidedly non-conformal, non-supersymmetric and non-Abelian theory

with very finite N - it is crucial to identify among the plethora of remarkable results known

for N = 4 SYM which are a consequence of the large amounts of symmetry and which

are truly universal. It is with this in mind that we investigate in this article the possibil-

ity that the Hagedorn temperature of the pp-wave string might be just such a universal

property of the theory. Of particular interest to us is the Hagedorn behavior of the pp-

wave string under a systematic breaking of supersymmetry of the sort that comes with a

recently discovered integrable deformation of AdS5×S5 [12]. This Lunin-Maldacena trans-

formation generates a one parameter family of marginal deformations of AdS preserving

an N = 1 supersymmetry and exactly dual to the Leigh-Strassler superpotential deforma-

tion of N = 4 SYM [13]. Unlike the original geometry in which all Penrose limits lead

to the same pp-wave background (essentially due to the SO(6) isometry of the 5-sphere),

the Lunin-Maldacena deformation AdS5 × S5
γ supports two inequivalent Penrose limits,

distinguished by choice of null geodesic. String theory on both plane wave backgrounds

has been studied in some detail with rather remarkable results. In particular, taking the

Penrose limit about any one of the (J, 0, 0), (0, J, 0) or (0, 0, J) class of geodesics yields a

conventional pp-wave background on which the string spectrum exhibits a distinct depen-

dence on the deformation parameter [12, 14]. The second set of BPS geometries, resulting

from taking the Penrose limit about null geodesics with angular momenta (J, J, J), is a set

of homogeneous plane waves whose metric lies in a different diffeomorphism class to that

of the former [15]. Intriguingly, the spectrum of strings on this spacetime is independent

of the deformation parameter1 - a result verified to one loop in the spectrum of anomalous

dimensions of near-BPS operators in the dual N = 1 gauge theory [16, 17].

Taking these spectra as a launching point, this article is organized as follows: In the

interests of self-containment and to establish our notation, in the following section we give

a detailed derivation of the single- and multi-string partition functions for strings on the

(undeformed) pp-wave background pointing out several subtleties along the way that will

factor into our later computations. With this foundation in place we present in section 3 a

very brief outline of the Lunin-Maldacena deformation, its various BPS pp-wave limits and

the oscillation spectra of strings on these backgrounds. Restricting our attention to the

(J, 0, 0) case, section 3.3 contains our derivation of the deformed multi-string partition func-

tion and corresponding Hagedorn temperature respectively. In section 4 we discuss, using

the recent prescription of [11], the matching of the Hagedorn temperature of the deformed

pp-wave string to the confinement/deconfinement transition of the dual gauge theory. Fi-

nally, our discussions and speculations on future directions are contained in the conclusion.

2. Thermodynamics of pp-wave strings

In this section, we present a detailed review of the thermodynamics of strings moving in a

maximally supersymmetric pp-wave background, closely following discussions in the second

1This is a result of a cunning conspiracy between the NS B−field turned on by the Lunin-Maldacena

transformation and the metric deformation. See [18] for more discussion on this point.
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reference of [10]. This pp-wave background is described by the metric

ds2 = −2dx+dx− − µ2
8∑

i=1

(
xi
)2 (

dx+
)2

+

8∑

i=1

(
dxi
)2
, (2.1)

where x± are the light-cone coordinates, and the xi describe eight transverse directions.

Amongst the numerous symmetries contained in this metric are an SO(8) rotational sym-

metry in the transverse coordinates (broken to SO(4) × SO(4) by the five-form field), 16

boost-like symmetries in the xi, x−-planes, and two translational isometries in the light-

cone x± directions - it is these isometries which are essential for the construction of the

single pp-wave string partition function.

2.1 Single string partition function

The partition function describing a single pp-wave string (in the canonical ensemble) mov-

ing in a heat bath at temperature T can be constructed using a combination of the two

translational isometries as follows:

Z1(a, b) = TrH e−ap+−bp− , (2.2)

Here p± ∼ −i∂±, while the two variables a and b determine the heat bath temperature T ,

which satisfies

T−2 = ab+ a2µ2
8∑

i=1

(
xi
)2
. (2.3)

We shall now consider the pp-wave string in the light-cone gauge,2 in which p− is fixed,

while p+, the light-cone Hamiltonian is

HLC =
1

2α′p−


ω0

(
NB

0 +NF
0

)
+
∑

n≥1

ωn

(
NB

n +NF
n + ÑB

n + ÑF
n

)

 , (2.4)

where ωn ≡ sign(n)
√
n2 +m2, with m = 2µα′p−, and NB,F

n and ÑB,F
n are the right- and

left-moving number operators describing the eight bosonic and eight fermionic modes. (The

right- and left-moving zero modes have been identified.) The zero point energy cancels out

due to the supersymmetry. The level-matching constraint

P =
∑

n≥1

n
(
NB

n +NF
n − ÑB

n − ÑF
n

)
= 0, (2.5)

which arises as a result of worldsheet translation invariance, must also be satisfied.

The single string partition function may now be written in the form

Z1(a, b,m) =

∫ ∞

0
dp+

∫ + 1

2

− 1

2

dτ1 e
−bp+

zlc

(
τ1,

a

4πα′p+
,m

)
, (2.6)

2The light-cone gauge is obtained by making use of the conformal gauge, in which the worldsheet metric

is diagonal, hαβ ∝ diag(−1, +1), and then setting X+(τ, σ) = X+
0 + (2α′p+)τ , with p+ a fixed constant

(see [22] for further details).
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with

zlc(τ1, τ2,m) ≡ Trstates e
−2πτ2HWS+2πiτ1P . (2.7)

The trace runs over all the eigenstates of the worldsheet Hamiltonian (HWS = 2α′p−).

The level-matching constraint is imposed using the delta function, which arises from the

integral over τ1.

Finally, it is known that this single string partition function may be written in terms

of building blocks Θα,δ. More specifically, we find that,3

zlc(τ1, τ2,m) =

[
Θ 1

2
,0(τ1, τ2,m)

Θ0,0(τ1, τ2,m)

]4

, (2.8)

with4

Θα,δ(τ1, τ2,m) ≡ e4πτ2Eδ(m)
∞∏

n=−∞

(
1 − e−2πτ2|ωn+δ|+2πiτ1(n+δ)+2πiα

)

×
(
1 − e−2πτ2|ωn−δ|+2πiτ1(n−δ)−2πiα

)
. (2.9)

Here Eδ(m) is the casimir energy of a complex boson of mass m with boundary conditions

φ(σ + 2π, τ) = e2πiδφ(σ, τ) [20]. This casimir energy cancels out of the relevant ratio due

to the supersymmetry.

2.2 Multi-string partition function

The multi-string partition function describing an ideal gas of pp-wave strings is known to

be described in terms of the single string partition functions of bosonic modes (ZB
1 ) and

spacetime fermionic modes (ZF
1 ),

lnZ(a, b,m) =

∞∑

r=1

1

r

(
ZB

1 (ar, br,m) − (−1)rZF
1 (ar, br,m)

)
. (2.10)

For the supersymmetric string, the partition functions for the two modes differ only by

a finite number - the number of bosonic minus fermionic zero modes. This gives a small,

constant contribution to the free energy, which at high temperatures will be negligible [10].

Thus

lnZ(a, b,m) =

∞∑

r=1
r odd

1

r
Z1(ar, br,m). (2.11)

Substituting (2.6) and (2.8) into the above expression, and changing variables of inte-

gration from p+ to τ2 =
ar

4πα′p+
now yields

lnZ(a, b, µ) =
a

4πα′

∫ 1

2

− 1

2

dτ1

∫ ∞

0

dτ2
(τ2)2

∞∑

r=1
r odd




Θ 1

2
,0

(
τ1, τ2,

µar
2πτ2

)

Θ0,0

(
τ1, τ2,

µar
2πτ2

)




4

e
− abr2

4πα′τ2 , (2.12)

which is proportional to the Helmholtz free energy.

3The numerator and denominator of this ratio of building blocks describe the contributions from the

fermionic and bosonic modes respectively.
4The two terms in the product describe two fields, which are complex conjugates of each other, while

the left- and right-moving modes are captured by negative and positive values of n respectively.
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2.3 Hagedorn behaviour

We now intend to investigate the Hagedorn behaviour of our gas of pp-wave strings, and

so, following Greene et. al. [10], we begin by searching for an exponential divergence of

the density of states. Towards this end, let us consider the building blocks Θα,δ in the

high energy limit p+ → ∞ (or τ2 → 0), in which µ̃ = mτ2 =
µar

2π
is held fixed. The

definition (2.9) yields

ln Θα,δ

(
τ1, τ2,

µ̃

τ2

)
= 4πτ2Eδ

(
µ̃

τ2

)
+

∞∑

n=−∞
ln
(
1 − e−2πτ2|ωn+δ|+2πiτ1(n+δ)+2πiα

)
+ c.c.

(2.13)

and, defining x ≡ (n+δ)τ2
µ̃ and θ ≡ τ1

τ2
, we see that ∆x = τ2

µ̃ ∆n → dx in the high energy

limit, so that x becomes a continuous variable over which we can integrate. Hence, since

τ2|ωn+δ| = µ̃
√

1 + x2, we obtain

ln Θα,δ

(
τ1, τ2,

µ̃
τ2

)
−→ µ̃

τ2

∫ ∞

−∞
dx ln

(
1 − e−2πµ̃

√
1+x2+2πiµ̃θx+2πiα

)
+ c.c.

≡ − µ̃√
1 + θ2τ2

[f(µ̃, θ, α) + c.c.] . (2.14)

Expanding out the logarithm, we obtain

f(µ̃, θ, α) =
√

1 + θ2

∫ ∞

−∞
dx

∞∑

l=1

1

l
e−2πµ̃

√
1+x2+2πiµ̃θx+2πilα + c.c.

= 2
√

1 + θ2

∞∑

l=1

1

l
e2πilα

∫ ∞

0
dx e−2πlµ̃

√
1+x2

cos (2πlµ̃θx) + c.c.

= 2

∞∑

l=1

1

l
e2πilα K1

(
2πµ̃l

√
1 + θ2

)
+ c.c. (2.15)

where K1(x) is a modified Bessel function of the second kind, which is a real positive

monotonically decreasing function tending to zero quickly as x→ ∞.

Now, since f̄(µ̃, θ, α) = f(µ̃, θ, α), when α = 0 or α = 1
2 , we find that

ln Θ 1

2
,0

(
τ1, τ2,

µ̃

τ2

)
− ln Θ0,0

(
τ1, τ2,

µ̃

τ2

)

−→ − 2µ̃√
1 + θ2τ2

[
f

(
µ̃, θ,

1

2

)
− f(µ̃, θ, 0)

]
=

8µ̃√
1 + θ2τ2

∞∑

l=1
l odd

1

l
K1

(
2πlµ̃

√
1 + θ2

)
.

Thus the behaviour of the multi-string partition function in the high-energy limit τ2 → 0

is given by

lnZ(a, b, µ) −→ a

4πα′

∞∑

r=1
r odd

∫ ∞

0

dτ2
τ2

∫ + 1

2τ2

− 1

2τ2

dθ e

− abr2

4πα′τ2
+ 16µar

πτ2

1√
1+θ2

2

4

∞
P

l=1
l odd

1

l
K1(µalr

√
1+θ2)

3

5

,
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where we have changed the integral over τ1 into an integral over θ = τ1
τ2

.

We now wish to determine for which temperatures (values of a and b) this partition

function converges. Only the r = 1 term need be considered.5 The convergent/divergent

nature of the integral over τ2 depends critically on the sign of the expression in the expo-

nential. The integral converges if

ab <
64aα′µ√
1 + θ2

∞∑

l=1
l odd

1

l
K1

(
µal
√

1 + θ2
)
≤ 64aα′µ

∞∑

l=1
l odd

1

l
K1 (µal) ≡ βH , (2.16)

for all θ. This critical point ab = βH corresponds to the Hagedorn temperature TH defined

by

T−2
H = βH + a2µ2

8∑

i=1

(
xi
)2

= 64α′µa
∞∑

l=1

1

l
K1(µal) + a2µ2

8∑

i=1

(
xi
)2
. (2.17)

The nature of the partition function at ab = βH was considered in the third of refer-

ences [10], and is related to the behavior of thermodynamic quantities as they approach the

critical point. A phase transition requires a finite free energy, though derived quantities,

such as internal energy (E = −(lnZ)′) or specific heat (C = β2(lnZ)′′) may diverge. The

hallmark of a limiting temperature, on the other hand, is a free energy which blows up

near βH . However, even in this case, it has been argued by Atick and Witten [6] that string

interactions can turn this into a first order transition, with a critical temperature below the

Hagedorn temperature. In the high energy limit τ2 → 0, the integral over θ is dominated

by the saddle point at θ = 0, with e−cθ2/τ2

fluctuations (c being a relatively unimportant

constant). Integrating over these fluctuations will produce a factor of
√
τ2. Consequently,

after performing the integral over τ2, the multi-string partition function goes like

βF = − lnZ(a, b, µ) ∝
√
ab− βH + regular, (2.18)

which remains finite at ab = βH , signaling a phase transition.

3. The deformation

As discussed in the Introduction, there are two classes of BPS deformations of the maxi-

mally symmetric pp-wave background, both arrived at by deforming the AdS5 × S5 type

IIB solution −thereby breaking the SO(6) isometry of the round 5-sphere to U(1)3 −
and then taking a Penrose limit about an appropriate null geodesic. To summarize,6 the

Lunin-Maldacena transformation maps the AdS5 × S5 metric to

ds2 = R2
[
− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2

3 + dα2 +G cos2 αdφ2
1 + sin2 α

(
dθ2

+G cos2 θdφ2
2+G sin2 θdφ2

3

)
+γ̂2G cos2 α sin4 α cos2 θ sin2 θ (dφ1+dφ2+dφ3)

2
]
,

5The modified Bessel function K1 is monotonically decreasing so that all the r > 1 terms are much

smaller (exponentially so) than the r = 1 term. Therefore, if the r = 1 term converges, then all the other

terms are also convergent.
6We refer the reader to [12] for more details on the deformation and to [18] for our notational conven-

tions. [17] also includes useful derivations.
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while turning on the NS B−field

B(2) = γ̂R2G
(

sin2 α cos2 α cos2 θ dφ1 ∧ dφ2 + sin2 α cos2 α sin2 θ dφ3 ∧ dφ1

+ sin4 α cos2 θ sin2 θ dφ2 ∧ dφ3

)
,

and the RR-fluxes

F(3) = −4γ̂

gs
R2 cos2 α sin3 α cos θ sin θ dα ∧ dθ ∧ (dφ1 + dφ2 + dφ3) ,

F(5) =
4

g5
R4
(
cosh ρ sinh3 ρ dt ∧ dρ ∧ dΩ3 +G cosα sin3 αdφ1 ∧ dα ∧ dΩ̃3

)
.

Since strings − the objects of interest in this article − couple only to the background

geometry and the B−field, we can, and will, ignore the RR-sector in what follows.

3.1 The pp-wave limit around single-charge null geodesics

The first of the pp-wave geometries associated to this background arises from taking a

Penrose limit about the (J, 0, 0) null geodesic on S5
γ by setting

ρ =
y

R
, α =

r

R
,

t = µx+ +
x−

2µR
, φ1 = µx+ − x−

2µR
,

and then scaling R→ ∞. The resulting background fields of the NS sector are

ds2γ = −2dx+dx− − µ2

[
4∑

i=1

(
xi
)2

+ (1 + γ̂2)

4∑

i=1

(yi)2

]
(
dx+

)2

+
4∑

i=1

(
dxi
)2

+
4∑

i=1

(
dyi
)2
, (3.1)

and

B(2) = µγ̂r2
(
cos2 θ dx+ ∧ dφ2 + sin2 θ dφ3 ∧ dx+

)
, (3.2)

with constant dilaton. The transverse coordinates in the original pp-wave background are

naturally split into two sets of four coordinates (which we shall denote xi and yi) by the

self-dual five-form flux. The effect of the deformation is to alter the effective string mass

for oscillations in one set of transverse directions (say yi) consequently breaking the SO(8)

degeneracy of the oscillation spectrum. Quantization of the closed string sigma model on

this background yields an oscillation spectrum in the eight transverse directions of

xi : ωn = sign(n)
√
m2 + n2, (3.3)

yi : ω±
n = sign(n)

√
m2 + (n± γ̂m)2, (3.4)

where m = 2α′µp+ and ± indicates the spin in the y1, y2 or y3, y4 planes. As expected,

fluctuations in the yi directions are dependent on the deformation parameter while those

in the xi are not.
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3.2 A homogeneous plane wave limit

With only a U(1)3 isometry remaining on the Lunin-Maldacena background, not all Penrose

limits are equivalent as not all geodesics can be rotated into each other. In particular,

by focussing on states that live near the null geodesic τ = ψ ≡ 1

3
(φ1 + φ2 + φ3) with

α0 = cos−1

(
1√
3

)
and θ0 =

π

4
. Setting7

θ =
π

4
+

√
2

3

x1

R
, α = α0 −

x2

R
, ρ =

y

R
,

ϕ1 =
x̃3

R
ϕ2 =

x̃4

R
, t = µx+ +

x−

2µR
, ψ =

x−

2µR
− µx+ ,

redefining

x3 =

√
2

3 + γ̂2

(
x̃3 +

1

2
x̃4

)
, x4 =

√
3

2(3 + γ̂2)
x̃4 ,

and taking the R→ ∞ limit gives the pp-wave metric

ds2 = −2dx+dx− − µ2

(
8∑

a=5

(xa)2 +
4γ̂2

3 + γ̂2

((
x1
)2

+
(
x2
)2 )

)
(dx+)2 +

8∑

a=5

(dxa)2

+
4∑

i=1

(dxi)2 +
4µ

√
3√

3 + γ̂2
(x1dx3 + x2dx4)dx+ . (3.5)

In this same limit, the remaining fields in the NS sector of the IIB multiplet are

B(2) =
γ̂√
3
dx3 ∧ dx4 +

2µγ̂√
3 + γ̂2

dx+ ∧
(
x1dx4 − x2dx3

)
,

e2φ =
1

1 + γ̂2
e2φ0 .

Additionally, this background supports non-vanishing RR 2− and 4−forms which, while

they result in rather sophisticated D-brane dynamics on the deformed geometry [18], are

irrelevant for our analysis. Closed strings in this background, their supersymmetries and

dual gauge theory operators were first studied in [16, 17] where it was noticed that a change

of coordinates from x− to x−+
√

3/(3 + γ̂2)(x1x3+x2x4) brings the (J, J, J) pp-wave metric

into the homogeneous plane wave form [15]

ds2 = −2dx+dx− + kijx
ixj (dx+)2 + 2fijx

idxjdx+ + dxidxi , (3.6)

7Here, ϕ1 ≡ 1

3
(φ1 + φ3 − 2φ2) and ϕ2 ≡ 1

3
(φ1 + φ2 − 2φ3).
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where the matrices kij = µ2diag

[
4γ̂2

3 + γ̂2
,

4γ̂2

3 + γ̂2
, 0, 0, 1, 1, 1, 1

]
and

fij =

√
3µ2

3 + γ̂2




0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




. (3.7)

Remarkably, even though the background and associated string equations of motion depend

on γ̂ in a fairly non-trivial way, the quantum closed string spectrum,

ωn = 1 ±
√

1 + 4n2 , (3.8)

determined by the frequency base ansatz of Blau et.al. [15] for strings on homogeneous

plane waves, exhibits no dependence on the deformation [16, 17] at all. Consequently, we

expect that the high temperature behaviour of an ensemble of strings on this particular

deformation of the maximally symmetric pp-wave should be identical to that of homoge-

neous plane wave strings (see for example [19]). While the Hagedorn behaviour of strings

on this particular class of homogeneous plane waves (i.e. non-trivial kij and fij) has not

yet - to the best of our knowledge - been studied, it is clear that it will be independent of

the deformation.

3.3 γ-deformed (J, 0, 0) Hagedorn temperature

Returning again to the (J, 0, 0) Penrose limit of AdS5 × S5
γ , we shall now construct the

partition function for an ideal gas of strings in this γ-deformed background. In computing

the partition function, much of the analysis is identical to the undeformed case. The

difference comes from the modified string spectra - there are four real oscillators with

|ωn| =
√
m2 + n2, and two each with |ω±

n | =
√
m2 + (n± γ̂m)2. This does, in fact, lead to

a partition function with non-trivial γ̂−dependence. Remarkably though, we will see that

in the high temperature limit (τ2 → 0), this difference disappears, and the actual Hagedorn

temperature itself is undeformed.

At the level of the building blocks, the effect of the γ-deformation is to change two of

the Θα,δ to

Θ±
α,δ(τ1, τ2,m) ≡ e4πτ2E±

δ
(m)

∞∏

n=−∞

(
1 − e−2πτ2|ω±

n+δ
|+2πiτ1(n+δ)+2πiα

)

×
(
1 − e−2πτ2|ω±

n−δ
|+2πiτ1(n−δ)−2πiα

)
. (3.9)

The exact form of the energy E±
δ (m) is unimportant in our present discussion (as long as

it is still independent of α), since it cancels out of the relevant ratio of building blocks due

to the residual supersymmetry.
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The γ-deformed (J, 0, 0) multi-string partition function can now be written (in the

same fashion as (2.16)) as

lnZγ(a, b, µ) =
a

4πα′

∫ 1

2

− 1

2

dτ1

∫ ∞

0

dτ2
(τ2)2

×
∞∑

r=1
r odd

e
− abr2

4πα′τ2

(
Θ 1

2
,0

Θ0,0

)2



Θ+
1

2
,0

Θ+
0,0






Θ−
1

2
,0

Θ−
0,0


 , (3.10)

where each Θ is an implicit function Θα,δ

(
τ1, τ2,

µar

2πτ2

)
.

Following the steps in section 2, it is not hard to show that in the high-energy limit,

the deformed oscillators lead to the replacement of the function f in (2.15) with

f±γ = 2
∞∑

l=1

e2πil(α∓γ̂µ̃θ)

l
K1

(
2πµ̃l

√
1 + θ2

)
≡ f

(
2πµ̃l

√
1 + θ2, α ∓ γ̂µ̃θ

)
. (3.11)

In contrast to the undeformed case, here we cannot set f̄ = f . Instead, for α = 0, 1/2,

f̄(x, α ∓ γ̂µ̃θ) = f(x, α± γ̂µ̃θ) . (3.12)

Consequently,
[
ln Θγ

1

2
,0
−ln Θγ

0,0

](
τ1, τ2,

µ̃

τ2

)

−→ − 2µ̃√
1 + θ2τ2

[
1

2
f

(
µ̃, θ,

1

2

)
+

1

4
fγ
+

(
µ̃, θ,

1

2

)
+

1

4
fγ
−

(
µ̃, θ,

1

2

)

−1

2
f(µ̃, θ, 0) − 1

4
fγ
+(µ̃, θ, 0) − 1

4
fγ
−(µ̃, θ, 0)

]

= − 4µ̃√
1 + θ2τ2

∞∑

l=1
l odd

1

l
[1 + cos (2πlγ̂µ̃θ)]K1

(
2πlµ̃

√
1 + θ2

)
,

and the diverging piece of the partition function (dominated by high energy modes) becomes

lnZγ(a, b, µ)

−→ a

4πα′

∞∑

r=1
r odd

∫ ∞

0

dτ2
τ2

∫ 1

2τ2

− 1

2τ2

dθ e

− abr2

4πα′τ2
+ 8µar

πτ2

1√
1+θ2

2

4

∞
P

l=1
l odd

1

l
[1+cos (µarlθγ̂)]K1(µalr

√
1+θ2)

3

5

.

Despite these changes to the partition function, in evaluating the high energy behavior,

the τ1 (i.e., θ) integral is dominated by a Gaussian which picks out θ = 0; in this limit, the

evaluation of the free energy is identical to the undeformed case8

−βF ∼
√
β2 − β2

H + regular , (3.13)

8In evaluating the gaussian, only the width changes - this affects the proportionality constant for F , but

not the location of the singularity.
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with β2 = ab and

β2
H = 64α′µ

∞∑

l=1
l odd

1

l
K1 (µal) . (3.14)

so that the Hagedorn temperature once more describes a phase transition. To summarize, a

key feature of this computation is that in the high temperature limit we find a continuum of

states where x ≡ (n+ δ)/µ̃ is effectively continuous. The spacetime deformation manifests

in the partition function only in that this continuous variable is changed from x→ x∓γ̂ and

since the Hagadorn temperature is given by the density of states ρ(w) = (dw(n)/dn)−1,

it must remain unchanged even though the spectrum of strings - and, consequently the

partition function also - on this background depends rather non-trivially on γ̂.

4. Matching the deformed gauge and string theories

A direct comparison between the thermodynamic properties of pp-wave strings (deformed

or otherwise) and the corresponding SYM operators is quite non-trivial, largely because

the pp-wave background is constructed by taking a Penrose limit in which the radius R,

and hence also the t’Hooft coupling λ ∼ R4, is large. More precisely, the correspondence

identifies the momenta p± of pp-wave string states with the conformal dimensions, ∆, and

U(1) R-charges, J , of the SYM operators via

2p+

µ
= ∆ − J, 2µα′p− =

∆ + J√
λ

, (4.1)

so that in the N → ∞ λ → ∞ limit with p± finite, the only states that survive are those

with conformal dimension and R-charge that scale like
√
N . Since these are precisely the

gauge theory states conjectured to be dual to the pp-wave string [8], the problem with

matching the Hagedorn/deconfinement temperature of the guage theory to the Hagedorn

temperature of the string theory is evident: BMN states form only a small subset of the

set of all possible states in the gauge theory. At small ’t Hooft coupling all of these

states are manifest in the gauge theory resulting in an apparent gross mismatch with a

state counting on the string side where the number of states grows exponentially as the

Hagedorn temperature is approached.

4.1 A novel decoupling limit

Armed with the latest in AdS/CFT technology, it was suggested in the series of works [11]

that this problem may be (at least partially) resolved by a new decoupling limit of the

correspondence. In the gauge theory, this decoupling corresponds to low temperatures and

near-critical chemical potentials while decoupling in the string theory takes place in the

large µ limit of a particular compactified pp-wave background with a flat direction. In the

interests of self-containment, we summarize here the main results in this argument.

The SU(N), N = 4 Yang-Mills supermultiplet consists of three complex scalars X,Y

and Z, four Weyl spinors ψα
i and one gauge vector boson Aµ. The partition function is a

sum over all multi-trace operators

O = Tr
(
W

(1)
1 . . .W

(1)
l1

)
. . .Tr

(
W

(k)
1 . . .W

(k)
lk

)
, (4.2)
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constructed from these fields or their derivatives. In the Harmark-Orselli decoupling limit9

which sends T, λ, ǫ→ 0 while keeping T̃ = T/ǫ and λ̃ = λ/ǫ fixed, most of the N = 4 SYM

states decouple - only those whose bare dimension is equal to their R-charge survive. This

reduces to a thermal quantum mechanics system with partition function

Z(β̃) = Tr
(
e−β̃(D0+λ̃D2)

)
(4.3)

- D0 and D2 are the tree and 1-loop contributions of the dilatation operator. This leaves

behind the well-known SU(2) sector, where only the two complex Higges, Z and X con-

tribute to the multi-trace operator (4.2). In principle then, since D2 is known, Z(β̃) is

computable for any value of λ and N . In practice, it is easier to take the planar limit

N → ∞, in which single trace operators dominate and D2 maps to the Hamiltonian of

the spin-1
2 XXX-Heisenberg spin chain. The partition function for a thermal state of the

Yang-Mills theory can then be computed as

Z(β̃) = exp

[
∑

n>0

∑

l>1

1

n
e−nβ̃lZ

(XXX)
l (nβ̃)

]
, (4.4)

where, following [11], Z
(XXX)
l (nβ̃) denotes the partition function of the ferromagnetic spin

chain of length l.

Key to this matching prescription is the manifest spatial isometry in the dual string

background about which the decoupling limit is taken; a pp-wave geometry with a flat

direction. In our notation, with two of the 5-sphere angular momenta turned on, this is

precisely the (J, J, 0) pp-wave,

ds2 = −2dx+dx− +

8∑

i=1

(
dxi
)2 − µ2

8∑

i=3

(
xi
)2 (

dx+
)2 − 4µx2dx1dx+ . (4.5)

Although this background is related to the (J, 0, 0) one by a time dependent coordinate

rotation

[
y1

y2

]
=

[
cos(µx+) − sin(µx+)

sin(µx+) cos(µx+)

] [
x1

x2

]

in the (x1, x2)−plane, the physics is rather different. In particular, there is one vacuum

state for each value of the momenta along the flat direction, x1 so that in the limit where

ǫ → 0 with µ̃ = µ
√
ǫ, H̃lc = Hlc/ǫ, g̃s = gs/ǫ, ls and p+ all fixed, the pp-wave spectrum

- and consequently the Hagedorn behaviour also - exactly matches the weakly coupled

gauge theory. At this point, everything we have said so far applies specifically to the

maximally supersymmetric N = 4 SYM theory. How then, is this matching prescription

affected under a systematic deformation, such as the Leigh-Strassler deformation, away

from maximal supersymmetry?

9See [11] for a more detailed discussion.
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Very generally, the Leigh-Strassler deformation [13] of N = 4 SYM produces a three-

parameter family of field theories that all preserve N = 1 supersymmetry with the N = 4

superpotential mapping to

h tr
(
eiπβΦ1Φ2Φ3 − e−iπβ̄Φ1Φ3Φ2

)
+ h′ tr

(
Φ2

1 + Φ2
2 + Φ2

3

)
(4.6)

Within this class of theories, of particular interest to us is the case (h, h′) = (1, 0) and β =

β̄ ≡ γ. For this choice, the Leigh-Strassler superpotential deformation can be resummed as

a Moyal-like ∗−product deformation Φ1∗Φ2 = e
iπγ(Q1

Φ1
Q2

Φ2
−Q2

Φ1
Q1

Φ1
)
Φ1Φ2, where (Q1

Φi
, Q2

Φi
)

are the charges of the Φi fields under a global U(1)1 × U(1)2 symmetry of the Yang-Mills

theory [12]. Consequently, not only is the Feynman diagram structure (at the planar level)

unchanged from the undeformed theory but since the deformation also preserves the three

Cartan generators of the SO(6) R-symmetry of the Yang-Mills theory, any closed subset

of single-trace operators in the original theory remains closed under the renormalization

group flow in the Lunin-Maldacena deformation. Specifically, this is true of the SU(2)

and SU(3) sectors10 consisting of single-trace operators built out of two and three complex

Higgs fields in the SYM supermultiplet respectively.

Indeed, like its undeformed counterpart, the dilatation operator of this γ−deformed

field theory can also be represented as a Hamiltonian of a spin-chain acting on a spin-chain

Hilbert space.11

To reiterate, under the Lunin-Maldacena deformation, since all commutators [A,B] →
[A,B]γ ≡ eiπγAB− e−iπγBA, interchanging any two differently charged letters in a single-

trace operator Tr(XJ1Y J2) comes with a γ−dependent phase. At the level of the associated

spin-chain Hamiltonian, this deformation can be realized [23] either a parity-preserving

ferromagnetic XXZ spin-chain with γ−twisted boundary conditions or as the Hamiltonian

of a XXZ spin-chain with broken parity and periodic boundary conditions,

H =
λ

(4π)2

J∑

l=1

[
Il ⊗ Il+1 −

(
σx

l ⊗ σx
l+1 + σy

l ⊗ σy
l+1 + σz

l ⊗ σz
l+1

)
(4.7)

+(1−cos(2πγ))
(
σx

l ⊗ σx
l+1+σy

l ⊗ σy
l+1

)
+sin(2πγ)

(
σx

l ⊗ σy
l+1−σ

y
l ⊗ σx

l+1

)]
.

Either way, the resulting spin-chain lends itself to a Bethe ansatz-type solution (see, for

instance, the second of [23]) from which the corresponding energy spectrum may be ex-

tracted and, following [11], the Hagedorn temperature determined. In principle then, we

should be able to match the temperature of the Hagedorn transition of the gauge theory

to the Hagedorn temperature of the dual string theory. Or should we?

The problem is that the SU(2) sector of the gauge theory - the first non-trivial sector

in which the matching prescription works - corresponds, in our notation, to a deformed

10Since the U(1) sector of the theory is spanned by single-trace operators constructed from just one of the

complexified Yang-Mills scalars, it is a straightforward consequence of the holomophicity of these operators

that this sector remains unaffected by the deformation
11For the sake of definiteness and to facilitate comparison with the (undeformed) Hagedorn/phase-

transition analysis of [11], we now restrict our attention to the SU(2)γ sector of the N = 1 theory and

content ourselves with some comments on the U(1) and SU(3) sectors at the end of this section.
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(J, J, 0) pp-wave. In the undeformed case, this geometry obtains from AdS5 × S5 by

expanding around the (J, J, 0) null geodesic

φ+ = t, α =
π

2
, θ =

π

4
, φ− = ρ = 0. (4.8)

Indeed, setting

t ≡ µx+ +
x−

µR2
, ρ ≡ r

R
, φ− ≡ x1

R
,

φ+ ≡ µx+ − x−

µR2
, α ≡ π

2
+
r̃

R
θ ≡ π

4
+
x2

R
,

and scaling R→ ∞ produces the (J, J, 0) pp-wave

ds2 = −2dx+dx− +
8∑

i=1

(
dxi
)2 − µ2

8∑

i=3

(
xi
)2 (

dx+
)2 − 4µx2dx1dx+, (4.9)

with an explicit isometry along the flat x1 direction. Like the (J, J, J) pp-wave, this

background is related to the maximally supersymmetric one by a time-dependent rotation -

this time in the (x1, x2)−plane. Under the Lunin-Maldacena deformation (or equivalently,

the TsT transformation), this metric maps to the deformed pp-wave (we omit several

variable re-definitions for brevity)

ds2 = −2dx+dx− +
8∑

i=1

(
dxi
)2

−µ2

[
8∑

i=5

(
xi
)2

+

(
4 − γ̂2 − γ̂4

4 + γ̂2

) 4∑

i=3

(
xi
)2 − 4γ̂2

4 + γ̂2

(
x2
)2
]
(
dx+

)2
(4.10)

+2µ
(
x1dx2 − x2dx1

)
dx+ +

2γ̂2

√
4 + γ̂2

µ
(
x3dx4 − x4dx3

)
.

Like the (J, J, J) background, this pp-wave is also rotationally disconnected from the de-

formed (J, 0, 0) pp-wave. In fact, the situation here is slightly worse; although the Penrose

limit is certainly well-defined at the level of the metric, this background is actually non-

BPS. The first manifestation of this fact arises when we try to apply the Penrose limit to

the NS B−field. Beginning with

B = γ̂R2G

[
cos2 α sin2 α cos(2θ) dφ1 ∧ dφ+

+ cos2 α sin2 α dφ1 ∧ dφ− +
1

2
sin4 α sin2(2θ) dφ− ∧ dφ+

]
, (4.11)

where φ± ≡ 1

2
(φ2 ± φ3), expanding around the (J, J, 0) null geodesic and organizing the

series in R we find that to leading order B =
1

2
γ̂µR dx1 ∧ dx+ which diverges linearly with

R in the Penrose limit. The consequences are clear; if any comparison with the SU(2)

– 15 –



J
H
E
P
0
2
(
2
0
0
8
)
1
0
8

sector of the Leight-Strassler deformation of N = 4 SYM is to be made, another way must

be found than the direct computation of the Hagedorn temperature of strings propagating

in the deformed (J, J, 0) pp-wave. To date, we have not managed to do so but, given the

success of the program advocated in [11], it would be disappointing indeed if this were not

possible for the N = 1 theory!

4.2 Decoupling the 1/2 - BPS sector of N = 1 SYM

To conclude this section, we make a few brief comments about the U(1)-sector of the gauge

theory. Under the Leigh-Strassler deformation, the gauge theory partition function becomes

Z(β,Ωi) = Tr


e

−βDγ+β
3

P

i=1

RiΩi


 . (4.12)

Here Dγ is the γ-deformed dilatation operator, while Ωi are the three chemical potentials

associated with the R-charges, Ri. At weak coupling λ ≪ 1, the dilatation operator

takes the form Dγ = D0 + λDγ
2 to leading order in λ. The γ deformation affects only

the interactions, so D0 yields simply the bare scaling dimensions. The (J, 0, 0) decoupling

limit, in which we are particularly interested here, corresponds to the choice of chemical

potentials (Ω1,Ω2,Ω3) = (Ω, 0, 0), with Ω → 1. We hold fixed β̃ ≡ (1−Ω)β and λ̃ =
λ

1 − Ω
,

resulting in small temperature/coupling. With this, the partition function becomes

Z(β̃) = Tr
(
e−β̃(D0+λ̃Dγ

2
)
)
, (4.13)

where the trace now runs over only those multi-trace operators with D0 = R1.

Now the only surviving states in the Hilbert space are built out of a Fock space of single

trace operators of the form Tr(Φ1∗Φ1∗. . .∗Φ1) = Tr(ΦL
1 ). Clearly holomorphic, these single

trace, half-BPS operators are protected by supersymmetry and therefore vanish under the

action of Dγ
2 (as well as all higher order terms in the γ-deformed dilatation operator).

Hence, confining ourselves to single-trace operators, the γ-deformed partition function in

the (J, 0, 0) decoupling limit is given by

Z1(β̃) = Tr
(
e−β̃L

)
=

∞∑

L=1

e−β̃L =
1

1 − e−β̃
, (4.14)

which is obviously independent of the deformation parameter γ.

4.3 γ-deformed string theory in the (J, 0, 0) decoupling limit

To complete the story, we still need to show that the matching prescription of [11] goes

through for the deformed string theory as well. Towards this end, on the string theory

side the Harmark-Orselli decoupling limit is implemented by taking ǫ→ 0 (to be identified

with the small parameter 1 − Ω in the gauge theory) while keeping R̃4 ≡ R4

ǫ fixed. A

modified Penrose limit, in which R̃ → ∞, but R4 ∼ λ still remains small, may then be
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imposed, while expanding around the (J, 0, 0) null geodesic. The resulting γ-deformed pp-

wave metric is identical to the unmodified version (3.1), except for an overall factor of
√
ǫ.

Furthermore, when taking this decoupling limit ǫ→ 0, we hold fixed

µ̃ ≡ µ
√
ǫ, H̃lc ≡

Hlc

ǫ
, α′ and p+, (4.15)

so that the mass parameter µ becomes large.

Now, from the γ-deformed modified pp-wave metric, we can deduce that the rescaled

spectrum for strings polarized in the eight transverse directions is

xi : ωn =
1

ǫ
sign(n)

√
m̃2 + ǫn2, (4.16)

yi : ω±
n =

1

ǫ
sign(n)

√
m̃2 + (

√
ǫn± γ̂m̃)2, (4.17)

where m̃ = m
√
ǫ is fixed. Notice that all these modes go like 1

ǫ as ǫ → 0. Thus, using

an argument similar to that of [11], we conclude that it is not possible to excite any of

the transverse modes in the ǫ → 0 limit as they correspond to states of infinite energy.

Therefore, in the decoupling limit, no non-trivial excited modes survive.

The γ-deformed single string partition function in this (J, 0, 0) decoupling limit must

hence be simply a function of the light-cone momentum p+ as follows:

Z1(b) =

∫ ∞

0
dp+ e−bp+

=
1

b
. (4.18)

What follows, then, is the following expression for the variable b as a function of the

inverse temperature β:

b = 1 − e−β̃ , with β̃ ≡ ǫβ. (4.19)

5. Conclusion

The idea that there exist quantities on both sides of the gauge theory/gravity correspon-

dence that are manifestly independent of the amount of supersymmetry or conformal sym-

metry is certainly not new. That one of these quantities might be the Hagedorn temper-

ature of strings on a particular background is intriguing. As far as we are aware, the first

such study of the universality of the Hagedorn behavior of strings on pp-wave geometries

was carried out in [24]. There it was demonstrated that the Hagedorn temperature, TH ,

of strings in the Lunin-Maldacena deformation of a pp-wave limit of the Maldacena-Nuñez

solution [25] of type IIB string theory is independent of γ. This is, however, only a nec-

essary condition on the universality of TH that needs to be supplemented by additional

arguments before it can be labelled universal.

In this article, we have pursued and confirmed - at least on the gravity side - the

line of reasoning initiated in [24]; the Hagedorn behavior of strings on different pp-wave

backgrounds related by an integrable supersymmetric deformation is exactly the same. This

lends further support to the conjecture that on the field theory side, in the large R-charge

limit, the Hagedorn behavior of N = 4 SYM and its N = 1 Leigh-Strassler deformation,
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two different field theories, is the same as well. The physics of this γ−independence is

essentially the same as that reported in [24]; in the UV the string excitation number, from

which the Hagedorn temperature is determined, is effectively a continuous variable and

the only effect of the deformation is to shift n by γ. On the gauge theory side, utilizing

technology developed in the series of papers [11], we have explored the possibility that

the matching of Hagedorn and Confinement/Deconfinement via the Heisenberg spin chain

might be extended to the N = 1 theory. Unfortunately, our results indicate that this

may be significantly more subtle than the N = 4 case. As we have argued in the last

two sections, the U(1) sector, spanned by holomorphic 1
2−BPS operators, is unchanged by

the deformation. Consequently, we have shown that the matching of Hagedorn behavior

goes through unaffected. The SU(2) sector, on the other hand, is far from trivial. Under

the Leigh-Strassler deformation, the XXX Heisenberg spin chain associated to single-trace

operators in this sector is mapped to an XXZ spin chain whose Hamiltonian may be

diagonalized by an appropriate Bethe ansatz. Even though the deconfinement transition

temperature may then be computed, we argue that no matching with the string theory

may be made, along the lines of [11] since the corresponding dual geometry is ill-defined.

It is clear then that this study of the thermal properties of strings on these deformed

pp-wave backgrounds and their dual gauge theories generates many more questions than

answers. Among those that we think deserve greater future attention are

• A more detailed study of the Hagedorn behavior of strings on the (J, J, J) homoge-

neous plane wave: Certainly, as we have argued in the main text, we expect that

the Hagedorn temperature will be independent of the deformation parameter. Nev-

ertheless, it remains to be seen what the actual Hagedorn behavior of strings on the

homogeneous plane wave is. Once determined, this temperature may be compared

to the confinement/deconfinement transition temperature in the PSU(2|3) sector of

the deformed gauge theory [23] following the prescription of [11].

• The Hagedorn behavior of strings under deformations of AdS5: While the focus of

this article was primarily on supersymmetric deformations of AdS5 ×S5 it should be

noted that the set of all integrable deformations is actually quite large. In addition

to complex β−deformations and the nonsupersymmetric 3−parameter deformation

that results in the Frolov-Roiban-Tseytlin background of [26], the TsT transformation

of [27] has also been applied to the global toroidal isometries of the AdS5 part of the

10-dimensional geometry [28]. Even though strings propagating on this AdSγ
5 × S5

geometry retain many of the properties of the Lunin-Maldacena background including

- but not restricted to - classical integrability and a sensible pp-wave limit, the dual

field theory seems to be more complicated and resembles a fully non-commutative

Yang-Mills theory. Nevertheless, the thermodynamic properties remain well defined

and it would be of interest to examine the Hagedorn behavior of strings on this

background as well as its pp-wave limit for signs of universality.

• Finally, it would be of obvious interest to know whether the Hagedorn behavior re-

ported here (and in [24]) persists for other geometries than AdS5×S5. The Klebanov-
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Strassler background [29] for instance, would make an excellent example, not only for

its confining properties but also because its γ−deformation is easily constructed [12].

Barring some fundamentally new insight into the nature of gravity or gauge theories

at strong coupling, the AdS/CFT conjecture will likely remain just that, a conjecture, at

least for the foreseeable future. In the absence of such a breakthrough though, concepts

like integrability and universality are becoming an increasing part of the gauge/gravity

vocabulary. However, whereas an enormous amount of energy has in recent years been

devoted to unveiling the integrability structures on both sides of the duality (with some

truly remarkable successes); the search for universal properties of the correspondence seems

to have been less systematic. It goes without saying that the study of universalities is, in

and of itself, an extremely interesting and fertile pursuit. Add to this our current proximity

to the release of LHC results and the requisite grasp of strong coupling gauge dynamics

and it becomes evident that a more complete glossary of the quantities that are in the

same universality class in large N , N = 4 SYM and QCD is crucial. We hope that the

arguments presented here will, if nothing else, stimulate further research in this direction.
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